The correct options are
C (−32,32) D (72,132)Given that the vertices of the
ΔABC are
A=(x1,y1)=(2,1),B=(x2,y2)=(3,−2) and take
C=(p,q).
∵ C lies on the line, y=x+3⇒q=p+3 ..........(i)
Now, Δ=±5 ...(∵ the Δ may lie on the either side of the axes.)
∴arΔABC=12∣∣
∣
∣∣pq1x1y11x2y21∣∣
∣
∣∣=12∣∣
∣∣pq12113−21∣∣
∣∣=±5
⇒q+3p−7=±10.
Either q+3p−7=10
⇒q=17−3p ...........(ii)
Or q+3p−7=−10
⇒q=−3p−3 ......(iii)
Eliminating q from equations (i) & (ii), we have
p+3=17−3p
⇒p=72
Putting this value of p in equation (i), we get
q=132
∴(p,q)=(72,132).→ First set
Or eliminating q from equations (i) & (iii), we have
p+3=−3p−3
⇒p=−32
Putting this value of p in equation (i), we get
q=−32
∴(p,q)=(−32,32)→ Second set