Let the third vertex of △ABC be (x,y).
∴ Vertices of △ABC are A(2,1),B(3,−2),C(x,y) respectively.
As we know that,
ar(△)=12∣∣
∣
∣∣x1y11x2y21x3y31∣∣
∣
∣∣
∴ar(△ABC)=12∣∣
∣∣2113−21xy1∣∣
∣∣
⇒ar(△ABC)=12[2((−2)−y)−1(3−x)+1(3y−(−2x))]
⇒ar(△ABC)=12[−4−2y−3+x+3y+2x]
⇒ar(△ABC)=12(3x+y−7)
Since vertex C lies on the line
y=x−2..........(1)
∴ar(△ABC)=12(3x+x−2−7)
⇒ar(△ABC)=12(4x−9)
As given that, ar(△ABC)=5
∴12(4x−9)=5
⇒4x−9=10
⇒4x=19
⇒x=194
On sustituting the value of x in eqn(1), we have
y=194−2
⇒y=19−84=114
Hence, the third vertex will be (194,114).