Circumradius of a pedal triangle is half the circumradius of the original triangle.
Also, angles of the pedal triangle will be 180o−2A,180o−2b,180o−2C
Now, area of the pedal triangle will be ∴p=2(R2)2sin2A⋅sin2B⋅sin2C =R22sin2A⋅sin2B⋅sin2C
From eqn(2) Δ=4p ⇒2R2sinA⋅sinB⋅sinC=4×R22sin2A⋅sin2B⋅sin2C ⇒cosA⋅cosB⋅cosC=18...(3)
From eqn(1) and (2), cosB=2pΔ=2p4p=12 ⇒∠B=π3...(4)
From eqn(3), cosA⋅cosC=14 ∠B=π3⇒∠A+∠C=120∘ ⇒cos(A+C)=−12 ⇒cosA⋅cosC−sinA⋅sinC=−12 ⇒14−sinA⋅sinC=−12 ⇒sinA⋅sinC=34