The area of the figure bounded by the curves y=lnx and y=(lnx)2 is
3−e
A=∫e1(lnx−(lnx)2)dx{∵∫lnx dx=xlnx−xand∫(lnx)2dx=[lnx(xlnx−x)−∫(lnx−1)dx]}A=(xlnx−x)−[lnx(xlnx−x)−∫(lnx−1)dx]=[xlnx−x−x(lnx)2+xlnx+xlnx−x−x]e1=[−x(lnx)2+3xlnx−3x]e1=−e+3e−3e+3=3−e