The area of the figure bounded by the curves y=ln x and y=(ln x)2 is
3−e
A=∫e1(ln x−(ln x)2) dx∫ ln dx=x ln x−x
∴A=(x ln x−x)|e1−[ln x(x ln x−x)|e1−∫e1(ln x−1)]
A=[x ln x−x−x(ln x)2+x ln x+x ln x−x−x]e1
A=[−x(ln x)2+3x ln x−3x]e1
A=−e+3e−3e+3=3−e