The area of the hexagon, if AB = BC = CD = DE = EF = FA = 13cm and AO = PD = 5cm, is
In the given figure, ∆AOB is right-angled triangle right angled at O.
So,
⇒ AO2 + OB2 = AB2.
⇒ 52 + OB2 = 132.
⇒ OB2 = 169 - 25 = 144
⇒ OB = 12cm
So now the total area of the hexagon = 4× Area of ∆AOB+ 2× Area of rectangle BCPO
⇒ Area = 4 × (12 × OB × AO) + 2 × (BC × OB)
⇒ Area = 4 × (12 × 12 × 5) + 2 × (13 × 12)
⇒ Area = 4 × (30) + 2 × (156)
⇒ Area = 432cm2.