The correct option is C
32a2
Changing the equation of the curve x3+y3−3axy=0 into polar form by substituting
x=rcosθ and y=rsinθ
We have, (rcosθ)3+(rsinθ)3−3a(rcosθ×rsinθ)=0
Or r=(3acosθsinθ)(cos3θ)+(sin3θ)⋯⋯(1)
From (1) r=0 when θ=0 and θ=π2
Hence the required area of the loop is,
=12∫π20r2dθ=12∫π20(3acosθsinθ(cos3θ)+(sin3θ))2dθ
=9a22∫π20(cosθsinθ(cos3θ)+(sin3θ))2dθ
=9a22∫π20⎛⎝tan2θsec2θ(1+tan3θ)2⎞⎠dθ
Dividing numerator and denominator by cos6θ
Now substitute (1+tan3θ)=t
⇒3tan2θsec2θ dθ=dt
Also when θ=0,t=1
and when θ→π2,t→∞
∴ Area of the loop =3a22∫∞11t2dt
=3a22[−1t]∞1=3a22