wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The area of the region between the curves y=1+sinxcosx and y=1-sinxcosx bounded by the lines x=0 and x=π4 is


A

02-1t(1+t2)(1-t2)dt

No worries! We‘ve got your back. Try BYJU‘S free classes today!
B

02-14t(1+t2)(1-t2)dt

Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C

02+14t(1+t2)(1-t2)dt

No worries! We‘ve got your back. Try BYJU‘S free classes today!
D

02+1t(1+t2)(1-t2)dt

No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B

02-14t(1+t2)(1-t2)dt


Explanation for the correct option:

Step 1: Finding the area of the given curve

Given curves are y=1+sinxcosx and y=1-sinxcosx
Boundary lines, x=0,y=π4
We know in x0,π4 1+sinxcosx>1-sinxcosx
So, to find the area we need to integrate between zero and π4.

Area =0π/41+sinxcosx-1-sinxcosxdx

Step 2: Evaluate 1-sinxcosx:
1sinxcosx=(cos2x2+sin2x2)(2sinx2cosx2)(cos2x2sin2x2)=(cosx2sinx2)2cos2x2sin2x2=cosx2sinx2cosx2+sinx2=1tanx21+tanx2

Step 3: Evaluate 1+sinxcosx:

Similarly, 1+sinxcosx=1+tanx21-tanx2

1+sinxcosx-1-sinxcosx=0π/41+tanx21-tanx2-1-tanx21+tanx2dx=0π/41+tanx2-1-tanx21-tan2x2dx=0π/42tanx21-tan2x2dx

Step 4: Evaluate 0π/42tanx21-tan2x2dx:

Let tanx2=t

sec2x2×12dx=dt1+tan2x2dx=2dt1+t2dx=2dtdx=2dt1+t2

The integral becomes,
1+sinxcosx-1-sinxcosx=02-14t1+t21-t2dt (tanπ8=2-1)
Hence, option (B) is the correct answer.


flag
Suggest Corrections
thumbs-up
2
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Algebra of Continuous Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon