The area of the region bounded by the curve y =16−x24 and y=sec−1[−sin2x], where [.] stands for the greatest integer function is:
A
(4−π)3/2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
83(4−π)3/2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
43(4−π)3/2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
83(4−π)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C83(4−π)3/2 [−sin2x]=0or−1.Butsec−10 is not defined . ∴[−sin2x]=−1. Hence the required area = area between the parabola x2=−4(y−4) and the straight line y=sec−1=π. Hence the required area= 2area MAB 2∫4πxdy=2∫4π√16−4ydy=4∫4π√4−ydy =−4⎧⎪
⎪
⎪⎨⎪
⎪
⎪⎩(4−y)3/232⎫⎪
⎪
⎪⎬⎪
⎪
⎪⎭4π=83(4−π)3/2