The correct option is
C 5The points of intersection of line √5x+2y=3√5 and the circe x2+y2=10 we have
y=3√52−√5x2 .......(1)
Substituting y from eqn.(1) in equation of circle , we get
x2+(3√52−√5x2)2=10 .......(2)
⇒x2+454+5x24−2×3√52×√5x2=10
⇒454+4x2+5x24−30x4=10
⇒9x2−30x+45−40=0
⇒9x2−30x+5=0 .......(3)
Roots are x=30±√900−4×9×52×9=30±√12018=5±2√53 .........(4)
∴x={5−2√53,5+2√53}
Substitute x=5−2√53 in (1) we get
y=3√52−√5×5−2√532
y=3√52−5√5−106
y=9√5−5√5+106
y=4√5+106
y=2√5+53
Substitute x=5+2√53 in (1) we get
y=3√52−√5×5+2√532
y=3√52−5√5+106
y=9√5−5√5−106
y=4√5−106
y=2√5−53
hence vertices of triangle are A(0,0),B(5+2√53,2√5−53) and C(5−2√53,2√5+53)
Area of a triangle=Δ=12∣∣
∣
∣∣x1y11x2y21x3y31∣∣
∣
∣∣
=12∣∣
∣
∣
∣
∣∣0015+2√532√5−5315−2√532√5+531∣∣
∣
∣
∣
∣∣
=12⎡⎣(5+2√53)2+(5−2√53)2⎤⎦
=12×9[25+20+20√5+25−20√5+20]
=12×9[2(25+20)]
=459=5sq.units.