The correct option is C 2a2
Since y=a2x,∴dydx=−a2x2
∴ At (x1,y1),dydx=−a2x21
Thus tangent to the curve will be y−y1=−a2x21(x−x1)
⇒yx21−y1x21=a2x+a2x1
⇒a2x+x21y=x1(x1y1+a2)=2a2x1,(∵x1y1=a2)
This meets the x-axis where y=0
∴a2x=2a2x1,∴x=2x1
∴ Point on the x-axis is (2x1,0)
Again tangent meets the y-axis where x =0
∵x21=2a2x1,∴y=2a2x1
So point on the y-axis is (0,2a2x1)
Required area =12(2x1)(2a2x1)=2a2