The argument of 1−i√31+i√3 is
240∘
1−i√31+i√3
Rationalising the denominator,
1−i√31+i√3×i−i√31−i√3=1+3i2−2√3i1−3i2=−2−2√3i4 (∵ i2=−1)=−12−i√32tan α=∣∣Im(z)Re(z)∣∣Then, tan~α=∣∣ ∣∣−√32−12∣∣ ∣∣=√3⇒ α=60∘
Since the points (−12,−√32) lie in the third quadrant, the argument is given by :
θ=180∘+60∘=240∘