The correct option is
C 130Given, AM and GM of two number x and y are integer
1<a<90<b<9
x+y2=10a+b⇒x+y=2(10a+b)(1)√xy=10b+a⇒xy=(10b+a)2(2)
Squaring equation (1) we get
x2+y2+2xy=400a2+80ab+4b2(3)
On multiplying (2) by 4 we get
4xy=400b2+4a2+80ab(4)
Subtracting equation (4) from (3) we get
(x−y)2=396(a2−b2)(x−y)=6√11(a2−b2)
For 11(a2−b2) to be a perfect square (a2−b2) should be equal to 11n
(a2−b2)=11,44,...(a+b)(a−b)=11⇒(x−y)=66
and (a+b)(a−b)=44⇒|(x−y)|=132
but a can be atmost 9 and b can be atmost 9
a+b≤18(a+b)(a−b)≤44a+b=11,a−b=4 but there is no interger value of a
Hence (a+b)(a−b)=11(x−y)=66
62−52=11a=6,b=5(a,b)(6,5)
x+y=2(10a+b)=2(10×6+5)=130