Each Part: 1 Mark
Let the 20 values be x1,x2,……,x20
Sum of these 20 values =x1+x2+……+x20
Given mean of the 20 values = 55
⇒x1+x2+……+x2020=55
⇒x1+x2+……+x20=55×20=1100
i) Each of the 20 values is increased by 5
∴ New values will be (x1+5),(x2+5),……(x20+5)
Their sum
=(x1+5)+(x2+5)+……+(x20+5)
=(x1+x2+……+x20)+20×5
=1100+100=1200
Total number of values = 20
∴ The mean of new values =120020=60
ii) Each of the 20 values is decreased by 5
∴ New values will be (x1−5),(x2−5),……(x20−5)
Their sum = 1100 - 100 = 1000
Total number of values = 20
∴ The mean of new values =100020=50
iii) Each of the 20 values is multiplied by 5
∴ New values will be 5x1,5x2,……5x20
Their sum =5×1100=5500
Total number of values = 20
∴ The mean of new values =550020
=275
iv) Each of the 20 values is divided by 5
∴ New values will be x15,x25,……,x205
Their sum =15×1100=220
Total number of values = 20
∴ The mean of new values =22020=11