The arithmetic mean of the numbers 2sin2∘,4sin4∘,6sin6∘,…,180sin180∘ is tank∘. Then the least positive integral value of k is
Open in App
Solution
Let 2sin2∘+4sin4∘+6sin6∘+⋯+180sin180∘90=x
Multiplying both sides by sin1∘, we get 2sin2∘sin1∘+2(2sin4∘sin1∘)+⋯+89(2sin178∘sin1∘)=90xsin1∘
Using the identity, 2sinAcosB=cos(A−B)−cos(A+B) we get (cos1∘−cos3∘)+2(cos3∘−cos5∘)+⋯+89(cos177∘−cos179∘)=90xsin1∘ ⇒cos1∘+cos3∘+cos5∘+⋯+cos175∘+cos177∘−89cos179∘=90xsin1∘ ⇒cos1∘+(cos3∘+cos177∘)+⋯+(cos89∘+cos91∘)−89cos179∘=90xsin1∘ ⇒cos1∘+0+⋯+0+89cos1∘=90xsin1∘ ⇒90cos1∘=90xsin1∘ ⇒x=cot1∘ ⇒x=tan89∘ ⇒k=89