The correct option is B 51π
Given
4cos3x−4cos3x−cos(315π+x)=1
⇒4cos3x−4cos3x−cosx−1=0[∵cos(315π+x)=(−1)315cosx=−cosx]
⇒(4cos2x+1)(cosx−1)=0
⇒cosx−1=0
4cos2x+1≠0
⇒cosx=1
⇒cosx=cos0
⇒x=2nπ,n∈I
∴x=2π,4π,6π,8π,...100π[∵0<x<315]
∴ Required Arithmetic mean
=2π+4π+6π+8π,...+100π50=2π.502.5150=51π