The correct option is B 9,1
Let the numbers be a and b.
According to the given condition,
|a−b|=8⇒(a+b)2−4ab=64⇒(a+b)2=4ab+64 ⋯(1)
Given, AM−GM=2
⇒a+b2−√ab=2⇒a+b=2√ab+4⇒(a+b)2=4ab+16+16√ab
Using equation (1), we get
4ab+64=4ab+16+16√ab⇒√ab=3
Now, a+b=10
and |a−b|=8
⇒a=9,b=1 or a=1,b=9
Therefore, the required numbers are 9,1