Let the asymptotes be 3x+4y+c1=0 and 4x+5y+c2=0
Since, the asymptotes passes through the centre (1,2) of the hyperbola.
∴,3+8+c1=0 and 4+10+c2=0
⇒c1=−11,c2=−14
Thus, the equations of the asymptotes are
3x+4y−11=0 and 4x+5y−14=0
Let the equation of the hyperbola be
(3x+4y−11)(4x+5y−14)+λ=0 ........(1)
It passes through (3,5).
∴,(9+20−11)(12+25−14)+λ=0
⇒18×23+λ=0
⇒414+λ=0
⇒λ=−414
Putting the value of λ in (1), we obtain
(3x+4y−11)(4x+5y−14)−414=0
This is the equation of the required hyperbola.