Let the asymptotes be 2x−3y+c1=0 and x+5y+c2=0
Since, the asymptotes passes through the centre (−1,−4) of the hyperbola.
∴,−2+12+c1=0 and −1−20+c2=0
⇒c1=−10,c2=21
Thus, the equations of the asymptotes are
2x−3y−10=0 and x+5y+21=0
Let the equation of the hyperbola be
(2x−3y−10)(x+5y+21)+λ=0 ........(1)
It passes through (−2,−3).
∴,(−4+9−10)(−2−15+21)+λ=0
⇒−5×4+λ=0
⇒−20+λ=0
⇒λ=20
Putting the value of λ in (1), we obtain
(2x−3y−10)(x+5y+21)+20=0
This is the equation of the required hyperbola.