Let the asymptotes be x−3y+c1=0 and 2x−y+c2=0
Since, the asymptotes passes through the centre (−3,2) of the hyperbola.
∴,−3−6+c1=0 and −6−2+c2=0
⇒c1=9,c2=8
Thus, the equations of the asymptotes are
x−3y+9=0 and 2x−y+8=0
Let the equation of the hyperbola be
(x−3y+9)(2x−y+8)+λ=0 ........(1)
It passes through (1,−3).
∴,(1+9+9)(2+3+8)+λ=0
⇒19×13+λ=0
⇒247+λ=0
⇒λ=−247
Putting the value of λ in (1), we obtain
(x−3y+9)(2x−y+8)−247=0
This is the equation of the required hyperbola.