Let the equation of the asymptote be
y=mx+c
Putting this in the equation of the curve,
x2+4xy+3y2+4x−3y+1=0⇒x2+4x(mx+c)+3(mx+c)2+4x−3(mx+c)+1=0⇒(1+4m+3m2)x2+(4c+6cm+4−3m)x+(3c2−3c+1)=0⇒Ax2+Bx+C=0
Asymptote meaning both roots at infinity,
Putting x→1t
⇒Ct2+Bt+A=0
This equation must have two zero roots,
∴B=0 and A=0;C≠0
C=(3c2−3c+1)>0[∵D<0]
Now, A=0
⇒1+4m+3m2=0⇒(3m+1)(m+1)=0⇒m=−1,−13
B=04c+6cm+4−3m=0⇒c=3m−46m+4=72,−52
Equation of the asymptotes are,
y=−x+72⋯(1)y=−x3−52⋯(2)
Finding point of intersection (h,k),
−h+72=−h3−52⇒h=9,k=−112
Hence, h+k=3.5