The asymptotes of the curve y=x2+2x−1x are
Given, y=x2+2x−1x, Domain is R−{0}
limx→∞y=∞ and limx→−∞y=−∞
So, no horizontal asymptote
limx→0+y=−∞ and limx→0−y=∞
∴x=0 is vertical asymptote
Let y=mx+c be an oblique asymptote (if it exists)
m=limx→±∞(yx)=limx→±∞(x2+2x−1x2)=1
c=limx→±∞(x2+2x−1x−x) =limx→±∞(2x−1x)=2
∴y=x+2 is an oblique asymptote.