The average cost function, AC for a commodity is given by AC=x+5+36x, in terms of output x. Find : (i). The total cost, C and marginal cost, MC as a function of x. (ii). The outputs for which AC increases.
Open in App
Solution
Given, AC=x+5+36x (i) TC=(AC)x
=(x+5+36x).x
=x2+5x+36
MC=ddx(TC)
=ddx(x2+5x+36) Ans. =2x+5
(ii) AC increases when ddx(AC)>0 ddx(x+5+36x)=0
1−36x2>0
⇒x2−36>0
⇒(x+6)(x−6)>0
⇒x<−6,x>6 But x is +ve therefore AC increases when x>6.