wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The average of msin(m) where m=2,4,6,,180 is equal to
(correct answer + 1, wrong answer - 0.25)

A
cot89
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
cot1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
tan1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
90sin89
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B cot1
Let 2sin2+4sin4+6sin6++180sin18090=x

Multiplying both sides by sin1, we get
2sin2sin1+2(2sin4sin1)++89(2sin178sin1)=90xsin1

Using the identity, 2sinAcosB=cos(AB)cos(A+B) we get
(cos1cos3)+2(cos3cos5)++89(cos177cos179)=90xsin1
cos1+cos3+cos5++cos175+cos17789cos179=90xsin1
cos1+(cos3+cos177)++(cos89+cos91)89cos179=90xsin1
cos1+0++0+89cos1=90xsin1
90cos1=90xsin1
x=cot1

Alternate Solution:
S=2sin2+4sin4+178sin178+180sin180
S=2[sin2+2sin4++89sin178] (1)

S=2[89sin178+88sin176++sin2] (2)

Adding (1)+(2), we get
2S=2[90(sin2+sin4++sin178)]
S=90(sin2+sin4++sin178)

By using sine summation series,
S=90sin(nθ2)sin(θ2)sin((n+1)θ2)

put n=89,θ=2
S=90sin89sin1sin90
S=90cos1sin1=90cot1

Average value =90cot190=cot1



flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Sine and Cosine Series
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon