Refer to the figure.1) Given equation of pair of straight lines is,
y2−8xy−9x2=0
∴y2−9xy+xy−9x2=0
∴y(y−9x)+x(y−9x)=0
∴(y−9x)(y+x)=0
∴y=9x and y=−x
2) Let L1:y=9x and L2:y=−x
As shown in figure, line L1 is perpendicular to line AB as well as bisecting line AB.
Thus, slope of line AB is,
m1=−19
Let coordinates of point A are A(h,k) and point B are B(x1,y1)
Thus, coordinates of mid-point of line AB = (h+x12,k+y12) (1)
Thus, equation of line AB is,
y−y1=m1(x−x1)
∴y−k=−19(x−h)
∴9(y−k)=−1(x−h)
∴9y−9k=−x+h
∴9y+x=h+9k
To find point of intersection of line L1 with line AB, put y=9x in above equation, we get,
9(9x)+x=h+9k
∴81x+x=h+9k
∴82x=h+9k
∴x=h+9k82
∴y=9(h+9k)82
Thus, coordinates of mid-point of line AB = (x,y)=(h+9k82,9(h+9k)82) (2)
From (1) and (2), we get,
h+x12=h+9k82
82(h+x1)=2(h+9k)
∴82h+82x1=2h+18k
∴82x1=2h+18k−82h
∴82x1=−80h+18k
∴x1=18k−80h82
∴x1=9k−40h41
Similarly, k+y12=9h+81k82
∴k+y1=9h+81k41
∴y1=9h+81k41−k
∴y1=9h+81k−41k41
∴y1=9h+40k41
Thus, coordinates of point B are (9k−40h41,9h+40k41)
3) line L2 is perpendicular to line AC.
Thus, slope of line AC = m2=1
Let coordinates of point C are C(x2,y2)
Thus, coordinates of mid-point of line AC = (h+x22,k+y22) (3)
Now, equation of line AC is,
y−k=1(x−h)
y−k=x−h
∴x−y=h−k
To find point of intersection of line L2 with line AC, put y=−x in above equation, we get,
x−(−x)=h−k
∴2x=h−k
∴x=h−k2
∴y=−(h−k)2
∴y=k−h2
Thus, coordinates of mid-point of line AC are (x,y)=(h−k2,k−h2) (4)
From (3) and (4), we get,
h+x22=h−k2
∴h+x2=h−k
∴x2=−k
Similarly, k+y22=k−h2
∴k+y2=k−h
∴y2=−h
Thus, coordinates of point C are C(−k,−h)
4) Equation of line BC=
y−y1y2−y1=x−x1x2−x1
∴y−(−h)(9h+40k41)−(−h)=x−(−k)(9k−40h41)−(−k)
∴y+h(9h+40k41)+h=x+k(9k−40h41)+k
∴41(y+h)9h+40k+41h=41(x+k)9k−40h+41k
∴y+h50h+40k=x+k50k−40h
∴y+h10(5h+4k)=x+k10(5k−4h)
∴y+h5h+4k=x+k5k−4h
∴y+h=x+k5k−4h(5h+4k)
Line BC is passing through point (f,g)
∴g+h=f+k5k−4h(5h+4k)
∴(g+h)(5k−4h)=(f+k)(5h+4k)
∴5gk−4gh+5kh−4h2=5fh+4kf+5kh+4k2
∴4h2−5hk+4gh−5gk+5fh+4kf+5kh+4k2=0
∴4h2+4k2+(4g+5f)h+(4f−5g)k=0
Replace h by x and k by y, we get,
∴4x2+4y2+(4g+5f)x+(4f−5g)y=0
This is locus of vertex A of triangle