Let O be the mid point of base BC of triangle ABC and the vertex A be (h,k)
In △ABDtanx=kh+a....(i)
In △ACDtanϕ=kh−a.....(ii)
Given y−x=α
⇒y=x+αϕ+y=πϕ=π−yϕ=π−(x+α)tanϕ=tan[π−(x+α)]tanϕ=−tan(x+α)tanϕ=−tan(α+x)tanϕ=−tanα+tanx1−tanαtanx
Substituting (i) and (ii)
kh−a=−tanα+kh+a1−tanαkh+a
kh−a=−htanα+atanα+kh+a−ktanα
hk+ak−k2tanα=−h2tanα−ahtanα−hk+ahtanα+a2tanα+ak
−h2tanα+k2tanα−2hk=−a2tanα
h2−k2+2hkcotα=a2
x2+2xycotα−y2=a2
is the required locus of vertex A