Let ABC be an isosceles triangle with AB=AC. We are given AB+AC=29cm and BC=21cm. Hence AB=AC=29/2=14.5cm. The altitude AD is drawn to the base bisects the base and is perpendicular to the base. Hence
CD=21/2=10.5cm. In △ADC,∠ADC=90o. Hence
AC2=AD2+CD2 [by pythagoras' theorem]
This gives AC2=AD2+CD2=(14.5)2−(10.5)2=(14.5+10.5)(14.5−10.5)=25×4=100
We obtain AD=10cm.