The base of a triangle is divide into three equal parts. If t1,t2,t3 be the tangents of the angles subtended by these parts at the opposite vertex, then (1t1+1t2)(1t2+1t3) is equal to :
Let point D and E divided the base BC into three equal parts i.e., BD=DE=DC=d and
Let α,β,γ be the angles subtended by BD,DE and EC respectively at their opposite vertex.
t1=tanα,t2=tanβ,t3=tanγ
Now in ΔABC,
BE:EC=2d:d=2:1
From m−n rule, we get
(2+1)cotθ=2cot(α+β)−cotγ
3cotθ=2cot(α+β)−cotγ ---- (1)
Again in ΔADC,
DE:EC=x:x=1:1
If we apply m−n rule in ΔADC, we get
(1+1)cotθ=1.cotβ−1cotγ
2cotθ=cotβ−cotγ----- (2)
From 1 and 2 we get,
3cotθ2cotθ=2cot(α+β)−cotγcotβ−cotγ
3cotβ−cotγ=4cot(α+β)
3cotβ−cotγ=4{cotα.cotβ−1cotβ+cotα}
3cot2β+3cotαcotβ–cotβcotα–cotαcotγ=4cotαcotβ–4
4+3cot2β=cotαcotβ+cotβcotγ+cotαcotγ
4+4cot2β=cotαcotβ+cotαcotγ+cotβcotγ+cot2β
4(1+cot2β)=(cotα+cotβ)(cotβ+cotα)
4(1+1tan2β)=(1tanα+1tanβ)(1tanβ+1tanγ)
4(1+1t22)=(1t1+1t2)(1t2+1t3)