The base of a triangle is divided into three equal parts. If α,β,γ be the angle subtended by these parts of vertex, prove that: (cotα+cotβ)(cotβ+cotγ)=4cosec2β
Open in App
Solution
Let point D and E divide the base BC into three equal parts i.e., BD=DE=DC=d (let) Let α,β and γ be the angles subtended by BD,DE and EC respectively at their opposite vertex. Now in △ABC ∵BE:EC=2d:d=2:1 ∴ from m−n rule, we get (2+1)cotθ=2cot(α+β)−cotγ ⇒3cotθ=2cot(α+β)−cotγ ...(i) Again since in △ADC,DE:EC=x:x=1:1 If we apply m−n rule in △ADC we get (1+1)cotθ=1−cotβ−1cotγ ⇒2cotθ=cotβ−cotγ ...(ii) From (i) and (ii), we get 3cotθ2cotθ=2cot(α+β)−cotγcotβ−cotγ ⇒3cotβ−3cotγ=4cot(α+β)−2cotγ ⇒3cotβ−cotγ=4cot(α+β)⇒3cotβ−cotγ=4{cotαcotβ−1cotβ+cotα} ⇒3cot2β+3cotαcotβ−cotβcotγ−cotαcotγ=4cotαcotβ−4 4+3cot2β=cotαcotβ+cotβcotγ+cotαcotγ ⇒4+4cot2β=cotαcotβ+cotαcotγ+cotβcotγ+cot2β ⇒4(1+1tan2β)=(1tanα+1tanβ)(1tanβ+1tanγ) 4csc2β=(cotα+cotβ)(cotβ+cotγ)