We have,
PQR is an equilateral triangle such that QR lies on x−axis.
O is the midpoint of QR.
So,
OQ=QR=4 units.
⇒ Coordinates of point R are (4,0).
Now,
Point P lies on the y−axis.
Let the coordinate of point P be (0,y).
So,
PQ=QR
⇒√(0+4)2+(y−0)2=√(4+4)2+02
⇒√16+y2=√64
Onsquaringbothsideandweget,
⇒16+y2=64
⇒y2=64−16
⇒y2=48
⇒y=±4√3
Hence, the coordinate of points P are (0,4√3) above x−axis.
And (0,−4√3) below x−axis.