Given: ABCD is a square. OA and OB bisect ∠A and ∠B
∠A=90 (ABCD is a square)
∠OAB=45∘ (OA bisects ∠A)
Similarly, ∠OBA=45∘ (OB bisecs ∠B)
Now, In △OAB
∠OAB=∠OBA=45∘
Hence, OAB is an Isosceles triangle
Sum of angles = 180
∠OAB+∠OBA+∠BOA=180
45+45+∠BOA=180
∠BOA=90∘
Thus, △OBA is a right angled Isosceles triangle.