The correct option is A 2x+z=5
→r=(1+s−t)^i+(2−s)^j+(3−2s+2t)^k
⇒x^i+y^j+z^k=(1+s−t)^i+(2−s)^j+(3−2s+2t)^k
Comparing coefficient, we get
1+s−t=x,2−s=y,3−2s+2t=z
⇒s=2−y,t=1+s−x=3−y−x
Eliminating s and t, we get
2x+z=5 which is required equation of plane in cartesian form.