Given that,
6x−2=3y+1=2z−2
6(x−26)=3(y+13)=2(z−22)
6(x−13)=3(y−(−13))=2(z−1)
(x−13)16=(y−(−13))13=(z−1)12
By comparing with
x−x1a=y−y1b=z−z1c
We get
x1=13,y1=−13,z1=1
a=16.,b=13,c=12
Hence direction ratio are (a,b,c)=(16,13,12)
Now, vector equation =+λ, where →a=x1ˆi+y1ˆj+z1ˆkand →b=aˆi+bˆj+cˆk
→r=(13ˆi−13ˆj+ˆk)+λ(16ˆi+13ˆj+13ˆk)