The correct option is
C (-2/7, 18/7)
Consider equation of first circle
∴x2+y2+6x−1=0
∴x2+y2+2(3)x−1=0
Comparing this equation with standard equation of circle i.e.∴x2+y2+2gx+2fy+c=0, we get,
g1=3, f1=0 and c1=−1
Consider equation of second circle
x2+y2−3y+2=0
x2+y2+2(−32)y+2=0
∴g2=0, f2=−32 and c2=2
Consider equation of third circle.
∴x2+y2+x+y−3=0
∴x2+y2+2(12)x+2(12)y−3=0
∴g3=12, f3=12 and c3=−3
Now, when one circle touches other circle orthogonally, we can write the equation as,
g´g+f´f=c+´c
For first circle, gg1+ff1=c+c1
∴3g+(0)f=c+(−1)
∴3g=c−1
∴c=3g+1 Equation (1)
For second circle, gg2+ff2=c+c2
∴(0)g+(−32)f=c+2
∴−32f=c+2
From equation (1),
−32f=3g+1+2
∴−32f=3g+3
∴−3f=2(3g+3)
∴−3f=6g+6
∴6g+3f=−6
Dividing both sides by 3, we get,
∴2g+f=−2 Equation (2)
For third circle, gg3+ff3=c+c3
∴(12)g+(12)f=c+(−3)
∴(g2)+(f2)=c−3
∴g+f=2(c−3)
∴g+f=2c−6
From equation (1), we get,
∴g+f=2(3g+1)−6
∴g+f=6g+2−6
∴g+f=6g−4
∴5g−f=4 Equation (3)
Adding equations (2) and (3), we get,
7g=2
∴g=27
Put this value in equation (3), we get,
5(27)−f=4
∴f=107−4
∴f=−187
Put these values in equation (1), we get,
c=3(27)+1
c=67+1
∴c=137
Thus, center of circle is given by,
C(−g,−f)
∴C(−27,187)