The centroid of the triangle formed by the lines x+y=1, 2x+3y=6 and 4x-y+4=0 lines in
We have,
x+y=1......(1)
2x+3y=6......(2)
4x−y=−4......(3)
From equation (1) and (2) to and we get,
(x+y=1)×2
2x+3y=6
2x+2y=2
2x+3y=6
On subtracting and we get,
y=4 put in (1) and we get,
2x+2y=2
2x+2(4)=2
2x+8=2
2x=−6
x=−3
Then, (x1,y1)=(−3,4)
From equation (2) and (3) to, and we get
(2x+3y=6)×2
4x−y=−4
4x+6y=12
4x−y=−4
On subtracting and we get,
7y=16
y=167
Put the value of y in equation (2) and we get,
2x+3y=6
2x+3×167=6
2x+487=6
2x=6−487
2x=42−487
2x=−67
x=−37
So, (x2,y2)=(−37,167)
From equation (3) and (1) to, and we get,
4x−y=−4
x+y=1
On adding and we get,
5x=−3
x=−35
Put the value of x in equation (4) and we get,
4x−y=−4
4×−35−y=−4
−125+4=y
y=−12+205
y=85
So, (x3,y3)=(−35,85)
Then the orthocenter is
(x,y)=(x1+x2+x33,y1+y2+y33)
(x,y)=(−3+(−37)+(−35))3,4+167+853
(x,y)=(−105−15−21105,140+80+56105)
(x,y)=(−141105,276105)
(x,y)=(−,+)IIndquadrent
Hence, this is the answer.