The circle of equation (x−3)2+(y−2)2=1 has center c. Point M(4,2) is on the circle. N is another point on the circle so that angle McN has a size of 30∘. Find the coordinates of point N.
(x−3)2+(y−2)2=1
C=(3,2),r=1
Any point on the circle is given by
(3+cosθ,2+sinθ)
Let N= (3+cosθ1,2+sinθ1)
Given ∠MCN=30
⟹tanϕ=|m1–m2|1+m1m2
m1 and m2 are slopes of lines ¯¯¯¯¯¯¯¯¯¯MC and ¯¯¯¯¯¯¯¯¯CN
M¯¯¯¯¯¯¯¯CN=2+sinθ1−23+cosθ1−3=tanθ
M¯¯¯¯¯¯¯¯NC=2−24−3=0
tanϕ=tanθ1−01+0=tan30
⟹θ1=30
⟹N=(3+√32,2+12)=(3+√32,52)