The circle x2+y2=4 cuts the line joining the points A(1,0) and B(3,4) in two points P and Q. Let BPPA=α and BQQA=β.
Given circle S=x2+y2=42
A(1,0),B(3,4)
Line joining AB is given by
y−0x−1=4–03–1⟹2x–y=2
⟹y=2x−2
Substituting in S
x2+4(x–1)2=4
⟹5x2=8x⟹x=0,85andy=−2,65
P=(0,−2),Q=(85,65)
α=BPPA=√32+62√12+22=√45√5=3
β=BQQA=√7252+14252√3252+6252
Equation having α,β as roots is given
(x−α)(x−β)=0
⟹(x–3)(x−73)=0
⟹3x2−16x+21=0 is the equation.