The correct option is A x2+y2−12x+24=0
A point on hyperbola is (3secθ,2tanθ)
This point lies on the circle, so
9sec2θ+4tan2θ−24secθ=0⇒13sec2θ−24secθ−4=0⇒(13secθ+2)(secθ−2)=0⇒secθ=2,−213∴secθ=2⇒tanθ=±√3
So, the point of intersection are
A(6,2√3) and B(6,−2√3)
∴ The circle equation with AB as diameter is
(x−6)2+y2=(2√3)2⇒x2+y2−12x+24=0