The correct option is
B 2x−√5y+4Given:Circle:C:x2+y2−8x=0 is of the form x2+y2+2gx+2fy+c=0
where 2gx=−8x⇒g=−4 and f=0,c=0
Radius of the cirlce =√g2+f2−c=√(−4)2+0+0=4 units
and center of the circle is (4,0)
Hyperbola x29−y24=1
The circle and hyperbola intersect at points A and B
Now, the equation of the tangent to the hyperbola is
xsecθ3+ytanθ2−1=0
Perpendicular distance from the center (4,0) of the circle to the tangent to the hyperbola is
4secθ3+0×tanθ2−1√sec2θ9+tan2θ4=radius of the circle
⇒4secθ3−1√4sec2θ+9tan2θ36=4
⇒4secθ−33×6√4sec2θ+9tan2θ=4
⇒(4secθ−3)√4sec2θ+9tan2θ=2
Squaring both sides,we get
⇒16sec2θ+9−24secθ=4(4sec2θ+9tan2θ)
⇒16sec2θ+9−24secθ=16sec2θ+36tan2θ
⇒9−24secθ=36tan2θ
⇒9−24secθ=36(sec2θ−1)
⇒9−24secθ=36sec2θ−36
⇒36sec2θ+24secθ−36−9=0
⇒36sec2θ+24secθ−45=0
⇒12sec2θ+8secθ−15=0 dividing by 3
⇒secθ=−8±√64+7202×12
=−8±√64−4×12×−152×12
=−8±282×12
secθ=−8+282×12,−8−282×12
secθ=202×12,−362×12
secθ=56,−32
But tanθ=√sec2θ−1=√(56)2θ−1=√25−3636 is imaginary.
∴secθ=−32
⇒tanθ=√sec2θ−1=√(−32)2θ−1=√9−44=√52
substituting secθ=−32 and tanθ=√52 in xsecθ3+ytanθ2−1=0 we get
−3x23+√5y22−1=0
or −3x6+√5y4−1=0
or x2−√5y4+1=0
or 2x−√5y+4 is the required equation of the common tangent with positive slope to the circle as well as the hyperbola