wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The circles of radii 5 cm and 3 cm intersect at two points and the distance between their centers is 4 cm. Find the length of the common cord in cm

Open in App
Solution

Given: circle C1 with radii 5cm
8C2 with radii 3cm
Intersecting at P&Q .
OP=5cm,XP=3cm&OX=4cm
To find: Length of common chor
i.e., length of PQ
Solution: Let the point where OX intersect PQ be R
lnaPOX&ΔQOX
OP=OQ
xP=xQ
Ox=Ox
ΔPOXΔQOX
POX=QOX
Also
In Δ POR \& ΔQOR
OP=OQ
POR=QOR
OR=OR
PRO=QRO
&PR=RQ
ΔPORΔQOR
PRO=QRO
&PR=RQ
since PQ is a line
PRO+QRO=180
PRO+PRO=180
2PRO=180
PRO=1802
PRO=90
Therefore,
QRO=PRO=90
Also,
PRX=QRO=90
Let OR=OXOR=4x
In In ΔOPR
PR2=25x2(4)
lnΔXPR
PR2=7x2+8x(5)
From (4)&(5)
52x2=7x2+8x
25x2=7x2+8x
25+7x2+x2=8x
32=8x
8x=32
x=328
x=4
Putting value
PR2=25x2
PR2=2542
PR2=2516
PR2=9
PR=9=3
PQ=2PR=2×3=6
Length of chord =6m

1115713_1195965_ans_01223ced0e294756810b4ffe9eea145e.jpg

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Congruence of Triangles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon