The correct option is C 1a2+1b2=1c2
The two circles are
x2+y2−2ax+c2=0
and x2+y2−2by+c2=0
centres: C1(a,0) C2(0,b)
radii: r1=√a2−c2, r2=√b2−c2
Since, the two circles touch each other externally
Therefore, C1C2=r1+r2
⇒√a2+b2=√a2−c2+√b2−c2
⇒a2+b2=a2−c2+b2−c2+2√a2−c2√b2−c2
⇒c4=a2b2−c2(a2+b2)+c4
⇒a2b2=c2(a2+b2)
⇒1a2+1b2=1c2