The correct option is
A (x+5)2+(y+0)2=25Given equation of circles
(x+12)2+y2=(15)2......(1)C1(x−2)2+y2=85.........(2)C2
Point of intersection of two circles
Subtracting (2) from (1), we get
(x+12)2−(x−2)2=140(2x+10)(14)=140x=0,y=±9
Let P(x1,y1) on circle C1 and Q(x2,y2) be the point on circle C2
PA∥BQ
Equation of line passing through P and A
(y−9)=m(x−0)⇒y=mx+9
Equation of line passing through B and Q
(y+9)=m(x−0)⇒y=mx−9
P is on circle C1 and Q is on circle C2
Intersection of line (y=mx+9) with circle C1 at point P
(x1+12)2+(mx1+9)2=(15)2(1+m2)x2+(24−18m)x1=0
x1=0,18m−241+m2 gives y1=9,9m2−24m−91+m2
Intersection of line y=mx−9 with circle C1 at Q
(x1−5)2+y2=85(x1−2)2+(mx1−9)2=85(1+m2)x1+(18m−4)x2=0
x2=0,4−18m1+m2 gives y2=−9,−9m2+4m+91+m2
(h,k) is the midpoint of P and Q
h=x1+x22 and k=y1+y22
Substituting the value of x1,x2,y1,y2, we get
h=−101+m2 and k=−10m1+m2
h=−101+m2k=100m2(1+m2)2......(3)
h+5=5+5m2−101+m2=5(m2−1)1+m2
Squaring both sides (h+5)2=25(m2−1)2(1+m2)2.....(4)
Adding (3) and (4)
(h+5)2+k2=25(m2−1)2+100m2(1+m2)2
(h+5)2+k2=25[m4+1−2m2+4m2](1+m2)2
(h+5)2+k2=25(1+m2)2(1+m2)2(h+5)2+k2=25
(x+5)2+y2=25