We have (a+bx+cx2)ex=(a+bx+cx2)e−x
=(a+bx+cx2)(1+(−x)+(−x)22!+...+(−x)n−2(n−2)!+(−x)n−1(n−1)!+(−x)n(n)!+...)
Hence coefficient of xn in the expansion of (a+bx+cx2)ex is
=a(−1)nn!+b(−1)n−1(n−1)!+c(−1)n−2(n−2)!
=a(−1)nn!+b(−1)nn(n−1)!+c(−1)n(n−1)n(n−1)(n−2)!
=a(−1)nn!+bn(−1)nn!+cn(n−1)(−1)nn!
=(−1)nn!(a−bn+cn2−cn)
=(−1)nn!(cn2−(b+c)n+a)