The coefficient of xn in the series 1+(2+bx)1!+(2+bx)22!+...+(2+bx)nn! is eabnn!. Find a
Open in App
Solution
Let a+bx=y then 1+a+bx1!+(a+bx)22!+(a+bx)33!+...∞ =1+y1!+y22!+y33!+...∞ =ey =ea+bx =ea.ebx =ea(1+bx+(bx)22!+...+(bx)nn!+...) =ea(1+bx+b2x22!+...+b3xnn!+...) Hence, coefficient of xn=eabnn! ⇒a=2