The coefficient of 1x in the expansion of (1+x)n(1+1x)n is
(2n)![(n−1)!(n+1)!]
(2n)![(n−1)!(n+1)!]
(1+x)n(1+1x)n=(1+x)n
(x+1x)n=(1+x)2nxn
Now to find the coefficient of 1xin(1+x)n(1+1x)n
=1xn(2nC0x0+2nC1x1+2nC2x2+....+2nCn−1xn−1+....+2nC2n−1x2n−1+2nC2nx2n)
∴ Coefficient of 1x=2nCn−1
[∵1xn×xn−1=1x]
=2n!(n−1)!(2n−n+1)!=(2n)!(n−1)!(n+1)!