We have,
coefficientof(r−1)thtermscoefficientofrthterms=13
nCr−2nCr−1=13
[n!(r−2)!(n−r+2)!][n!(r−1)!(n−r+1)!]=13
(r−1)!(n−r+1)!(r−2)!(n−r+2)!=13
(r−1)(r−2)!(n−r+1)!(r−2)!(n−r+2)(n−r+1)!=13
(r−1)(n−r+2)=13
3r−3=n−r+2
4r=n+5 ……… (1)
Similarly,
coefficientofrthtermscoefficientof(r+1)thterms=35
nCr−1nCr=35
n!(r−1)!(n−r+1)!n!r!(n−r)!=35
r!(n−r)!(r−1)!(n−r+1)!=35
r(r−1)!(n−r)!(r−1)!(n−r+1)(n−r)!=35
r(n−r+1)=35
5r=3n−3r+3
8r=3n+3 ………. (2)
From equation (1) and (2), we get
n=7,r=3
Hence, the value of n,r=7,3, respectively.