The correct option is A 1.5×10−2
Let V0 be the initial volume of glycerine, i.e., at 0oC (dry). If Vt be its volume at 30oC.
Then Vt=V0(1+vΔt)
=V0(1+49×10−5×30)
Vt=V0(1+0.01470)=1.0147070V0
⇒V0Vt=11.01470
Let
ρ0 and ρt be the initial and final
densities of glycerine then initial density, ρ0=mv0 and final density, ρt=mVt
where, m= mass of glycerine
Δρρ0=
ρt−ρ0ρ0=m(1Vt−1V0)mV0=(V0Vt−1)
⇒ΔρΔρ0=(11.01470−1)=−0.0145
Here, negative sign shows that density decreases with rise in temperature.
Δρρ0=0.0145=1.45×10−2
⇒ΔρΔρ0=1.5×10−2