The coefficient of x4 in the binomial expansion of (1+x)4+(1+x)5+⋯+(1+x)11+(1+bx)12 is (n+1)⋅13C5 for some n∈N. Then the smallest natural number possible for b is
Coefficient of x4=12C5−0+12C4b4
So, 12C5+12C4b4=(n+1)⋅13C5 ⇒b4−1=135n ⇒n=5(b4−1)13 ⇒n=5(b−1)(b+1)(b2+1)13
Since n∈N, the least possible value of b is 12