The coefficient of x49 in the product (x−1)(x−3)…(x−99) is
(x−α1)(x−α2)(x−α3)…(x−αn)=xn+A1xn−1+A2xn−2+⋯+An
Where ,
Ap=(−1)p∑(α1α2…αp);(p terms at a time)
Given,
(x−1)(x−3)…(x−99) contains 50 terms,
Coefficient of x49=A1=(−1)1∑(α)=−(1+3+⋯+99)=−50×50=−2500
(Sum of first n odd numbers =n2)