The coefficient of x5 in the expansion of 1+x2a+x,|x|<1, is
Let S=1+x2a+x,|x|<1
S=(1+x2)(a+x)−1
S=a−1(1+x2)(1+xa)−1
(1+x)n=1+nx+n(n−1)2!x2+n(n−1)(n−2)3!x3...
Put n=−1 and x=xa:
(1+xa)−1=1−(xa)+(xa)2−(xa)3...=∞∑0(−1a)nxn
Substituting in S:
S=a−1(1+x2)(1−(xa)+(xa)2−(xa)3...)
∴ S=a−1(1−(xa)+∞∑2[(−1a)n+(−1a)n−2]xn)
The coefficient of x5 (Say β) in S=a−1[(−1a)5+(−1a)3]
∴β=(−1)[(1a)6+(1a)4]